Physics at the Tevatron

Lecture III

Beate Heinemann University of Liverpool

Outline

- Lecture I:
 - The Tevatron, CDF and DØ
 - Production Cross Section Measurements
- Lecture II:
 - Top Quark Mass and the Higgs Boson
 - jet energy scale and b-tagging
- Lecture III
 - B_s mixing and B_s→μμ rare decay
 - Vertex resolution and particle identification
- Lecture IV
 - Supersymmetry and High Mass Dilepton/Diphoton
 - Missing ET

B mesons

History: B Mass and Lifetime

- Upsilon observation 1978
 - 3rd generation exists
 - Mass about 5 GeV

- Lifetime observation 1983:
 - Lifetime = 1.5 ps⁻¹
 - Enables experimental techniques to identify B's

Why B Physics?

- New physics could contribute to B-decays
 - SUSY particles can contribute in addition to SM particles
 - Z' bosons could also alter the effective couplings
- Complementary to direct searches

B Physics at Hadron Colliders

• Pro's

- Large cross section: 18 μb
 - 1000 times larger than at Bfactories
- Produce all B-hadron species:
 - B^0 , B_s^0 , Λ_b , B_c ,...

Con's

- No reconstruction of neutrals (photons, π^0 's)
- difficult to trigger, bandwidth restrictions
- Messy environment

A typical B-decay event

The SVT Trigger at CDF

• trigger $B_s \to D_s^-\pi$, $B_s \to D_s^- I^+$

- trigger extracts 20 TB /sec
- "unusual" trigger requirement:
 - two displaced tracks:

 $(p_T > 2 \text{ GeV/c}, 120 \mu\text{m} < |d_0| < 1 \text{mm})$

requires precision tracking in SVX

Particle Identification

- TOF detector measures time of arrival in at r=140cm
 - Resolution 119 ps
 - Time depends on particle mass:
 - For M>0: v≠c
- Measure pulse height in COT, dE/dx:
 - lonization depends on particle species

Particle Identification Results

- Separate kaons from pions
 - dE/dx gives 1σ separation for p>2 GeV
 - TOF gives better separation at low p
- Used for:
 - Kaon/pion separation

J/Psi signals

- Superb calibration signal
- Yields:
 - CDF 2.7M / 360 pb⁻¹
 - DØ: 0.4M / 250 pb⁻¹
- Mass resolution ~1%
 - CDF: 12 MeV
 - DØ: 60 MeV
- Used to calibrate:
 - Magnetic field
 - Detector material
 - Momentum resolution
 - Hadron calorimeter

J/ψ Invariant Mass

Lifetime Measurements: B_s^0, Λ_b, B_c

Measure lifetimes of many B hadrons:

$$\lambda_B = \frac{L_{xy}}{(\beta \gamma)_T^B} = L_{xy} \frac{cM_B}{p_T},$$

- Why?
 - Tests theoretical predictions:
 - Electroweak and strong sector play role
 - Demonstrates
 understanding of vertex
 resolution/detector
 - Important for both low and high P_T physics programme

Λ_{b} Lifetime

- Standing puzzle at LEP
 - Why is the lifetime so much shorter than that of the other B mesons
 - Measurement were mostly made in semileptonic decays due to low stats
- New at Tevatron
 - Measurements in fully hadronic decay modes
 - Indication it may be higher in those modes
- Are we missing anything in semileptonic decays
 - Other than the neutrino????

Summary of Lifetimes

- Good agreement with PDG world average
 - Mostly LEP data
 - Precision similar
- Theoretical predictions mostly confirmed
- Outstanding questions
 - Is B_s lifetime really shorter than B_d lifetime?
 - Is Λ_b lifetime really shorter?
 - Are the semileptonic measurements systematically lower than the hadronic ones?
- Will be answered with increasing data samples

B_s mixing

Cabibbo-Kobayashi-Maskawa Matrix

CKM Matrix Wolfenstein parameterization

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{ud} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

$$V_{ts} \sim \lambda^2$$
, $V_{td} \sim \lambda^3$, $\lambda = 0.224 \pm 0.012$

- Is this 3x3 matrix unitary?
 - 4th generation quarks?
 - New forces? E.g. SUSY?
- Measure each side and each angle:
 - Do all measurements cross at one point?

B Mixing

Neutral B Meson system

$$|B>=(\overline{b}s);|\overline{B}>=(b\overline{s})$$

 Mass eigenstates are mixture of CP eigenstates:

$$|B_L\rangle = p|B^0\rangle + q|\overline{B}^0\rangle$$
 $|B_H\rangle = p|B^0\rangle - q|\overline{B}^0\rangle$
with $|p|^2 + |q|^2 = 1$

- B_H and B_L may have different mass and lifetime
 - $\Delta m = M_H M_L$ (>0 by definition)
 - $\Delta\Gamma$ = Γ_H Γ_I where Γ =1/ τ

• The case of $\Delta\Gamma = 0$

$$p(B \to B) = \frac{e^{-t/\tau}}{2\tau} (1 + \cos \Delta mt)$$
$$p(B \to \overline{B}) = \frac{e^{-t/\tau}}{2\tau} (1 - \cos \Delta mt)$$

B_s mixing and the CKM Matrix

Ratio of frequencies for B⁰ and B_s

$$\frac{\Delta m_{s}}{\Delta m_{d}} = \frac{m_{Bs}}{m_{Bd}} \frac{f_{Bs}^{2} B_{Bs}}{f_{Bd}^{2} B_{Bd}} \frac{|V_{ts}|^{2}}{|V_{td}|^{2}} = \frac{m_{Bs}}{m_{Bd}} \xi^{2} \frac{|V_{ts}|^{2}}{|V_{td}|^{2}}$$

 ξ = 1.210 +0.047 from lattice QCD (hep/lat-0510113)

$$V_{ts} \sim \lambda^2$$
, $V_{td} \sim \lambda^3$, $\lambda = 0.224 \pm 0.012$

Constrain side of triangle:

$$|V_{td}|^2 = A^2 \lambda^4 \left[(1 - \rho)^2 + \eta^2 \right]$$

$$\frac{|V_{td}|^2}{|V_{ts}|^2} = (1 - \rho)^2 + \eta^2.$$

Unitarity Triangle Fit

- just for illustration, other fits exist
- CKM Fit result: Δm_s : 18.3^{+6.5}_{-1.5} (1 σ) : ^{+11.4}_{-2.7} (2 σ) ps⁻¹

The "Big" Picture

significance of measurement

$$\frac{1}{\sigma} = \sqrt{\frac{S\epsilon D^2}{2}} e^{-\frac{(\Delta m_s \sigma_t)^2}{2}} \sqrt{\frac{S}{S+B}}$$

Flavour tagging

Time resolution

$$\frac{1}{\sigma} = \sqrt{\frac{S\epsilon D^2}{2}} e^{-\frac{(\Delta m_s \sigma_t)^2}{2}} \sqrt{\frac{S}{S+B}}$$

Flavour tagging

B signal efficiency

Time resolution

Signal Identification

$$\frac{1}{\sigma} = \sqrt{\frac{S\epsilon D^2}{2}} e^{-\frac{(\Delta m_s \sigma_t)^2}{2}} \sqrt{\frac{S}{S+B}}$$

B signal reconstruction

Semileptonic vs Hadronic Decays

- Semileptonic:
 - High statistics:
 - 50K events
 - B momentum not known
 - Neutrino missing
 - Requires average correction factor K

$$ct = L_{xy} \frac{m(B)}{p_T(B)} = L_{xy} \frac{m(B)}{p_T(\ell D)} \cdot K$$

Poorer time resolution

- Hadronic:
 - Lower statistics:
 - 4K events
 - Full reconstruction of B momentum

$$ct = L_{xy} \frac{m(B)}{p_T(B)}$$

Excellent time resolution

$$\sigma(ct) = \sqrt{(\sigma_0(ct))^2 + (ct \cdot \frac{\sigma(p)}{p})^2}$$

Semileptonic and Hadronic Signals

Semileptonic: $B_s \rightarrow lvD_s$

Mass($\phi(K^{\dagger}K^{-})\pi^{-},\pi^{+}$) [GeV/c²]

Semileptonic decays:

- DØ: ~27,000

- CDF: ~53,000

Hadronic Decays:

- CDF: ~3,700

Proper Time Resolution

- Semileptonic Decays:
 - Resolution about 1 oscillation period
- Hadronic Decays:
 - Resolution 5 times better than 1 oscillation period

Production Flavour Tagging

Opposite side tagging

Same side tagging

- Opposite side tags:
 - Only works for bb production mechanism
 - Used by CDF ($\varepsilon D^2=1.5\%$) and DØ ($\varepsilon D^2=2.5\%$):
 - · Lepton (muon or electron) or jet charge
- Same side tags:
 - Identify Kaon from B_s fragmentation
 - CDF: $\varepsilon D^2 = 3.5 4.0\%$
- Figure that matters: εD²
 - Efficiency ε of tagging (right or wrong)
 - Dilution D is fraction of correct tags

$$\epsilon = \frac{N_{tag}}{N_{all}}$$

$$D = \frac{N_{right} - N_{wrong}}{N_{tag}}$$

Same Side Kaon Tagger Crosschecks

- Have to rely on MC to determine performance of Same Side Kaon Tagger
 - Extensive comparison of data and MC in high statistics B modes
- Good agreement between data and MC => confidence

"Amplitude Scan": Measuring ∆m_s

In principle: Measure asymmetry of number of matter and antimatter decays:

$$A(t) = \frac{N(B_s^0 \to B_s^0)(t) - N(B_s^0 \to \overline{B}_s^0)(t)}{N(B_s^0 \to B_s^0)(t) + N(B_s^0 \to \overline{B}_s^0)(t)} \propto \cos(\Delta mt)$$

In practice: use amplitude scan method

introduce amplitude to mixing probability

formula

$$P_{unmix}^{B_s} = \frac{1}{2} \Gamma_{B_s} e^{-\Gamma_{B_s} t} \left(1 + A \cos \Delta m_s t \right)$$

$$P_{mix}^{B_s} = \frac{1}{2} \Gamma_{B_s} e^{-\Gamma_{B_s} t} \left(1 - A \cos \Delta m_s t \right)$$

- evaluate at each ∆m point
- Amplitude=1 if evaluated at correct ∆m
- Allows us to set confidence limit when $1.645\sigma=1$

H. G. Moser, A. Roussarie, NIM **A384** (1997)

The World Data: PDG 2005

- Primarily data from LEP and SLD:
 - Consistent with no mixing within 2σ everywhere
 - Consistent with mixing beyond 14.5 ps-1
 - Actual limit worse that sensitivity
 - either first hint of signal around 17-20 or statistical fluctuation
- Single best experiments sensitivity: ALEPH Δm_s>10.9 ps⁻¹

Amplitude Scan: Semileptonic Decays

- Result:
 - DØ see high value at 19 ps⁻¹
 - 2.5σ from 0: 1% probability to be consistent with no oscillations
 - 1.6σ from 1: 10% probability to be consistent with oscillation
 - CDF consistent with both oscillation and no-oscillation hypothesis within 1σ for $\Delta m_s > 15$ ps⁻¹
- Sensitivity similar for CDF and DØ
 - this is a priori measure of analysis power
 - DØ: 14.1 ps⁻¹, CDF: 17.3 ps⁻¹ (better than best experiment before)

Amplitude Scan: Hadronic Decays

- CDF sees 3.5σ oscillation signal at $\Delta m_s = 17.3 \text{ ps}^{-1}$
 - Consistent with oscillations: A=1
 - Sensitivity: 25 ps⁻¹ (much better that the entire world data!)
- Use likelihood method to quantify signal and measure Δm_s

Combined CDF Amplitude Scan

Likelihood

- Likelihood ratio: ∆log(L) = log[L(A=1) / L(A=0)]
 - likelihood "dip" at signal
- Pseudo-experiments tell us how often this happens randomly:
 - DØ: 5.0+-0.3% within range of 16-22 ps⁻¹
 - CDF: 0.5% anywhere at all
- Result:

– DØ set 90% CL limit:

$$17 < \Delta m_s < 21 \text{ ps}^{-1}$$

– CDF measure:

$$\Delta m_{\rm s}$$
 = 17.33 $^{+0.42}_{-0.21}$ (stat) \pm 0.07 (syst) ps⁻¹

Measurement of ∆m_s

 $\Delta m_s = 17.33^{+0.42}_{-0.21} \text{ (stat)} \pm 0.07 \text{ (syst) ps}^{-1}$

the measurement is already very precise! (at 2.5% level)

 Δm_s in [17.00, 17.91] ps⁻¹ at 90% CL Δm_s in [16.94, 17.97] ps⁻¹ at 95% CL

New Unitarity Triangle Fit

- Significant impact on Unitarity triangle understanding
- So far CKM matrix consistent with Unitarity: U+U=1

$$B_s \rightarrow \mu^+ \mu^-$$

Rare Decay: B_s→µ⁺µ⁻

SM rate heavily suppressed:

$$BR(B_s \to \mu^+ \mu^-) = (3.5 \pm 0.9) \times 10^{-9}$$
(Buchalla & Buras, Misiak & Urban)

SUSY rate may be enhanced:

$$BR(B_s \to \mu^+\mu^-) \propto \tan^6 \beta/m_A^4$$
 (Babu, Kolda: hep-ph/9909476+ many more)

- Separate signal from huge background\
- Analysis is performed "blind"
 - First finalise cuts and background estimates
 - Only then look at data!
- More details on SUSY in lecture tomorrow

$B_s \rightarrow \mu^+ \mu^-$: Cut Optimisation

- Select 80,000 events with
 - 2 muons with p_T>2 GeV
 - $P_T(\mu\mu) > 6 \text{ GeV}$
 - $-4.669 < M(\mu\mu) < 5.969 GeV$
- Discriminating variables:
 - 1. Dimuon mass
 - 2. Lifetime: λ =ct
 - 3. Opening angle between muons: $\Delta\alpha$
 - 4. Isolation of B_s
- Construct likelihood ratio using variables 2-4

$B_s \rightarrow \mu^+ \mu^-$: Likelihood ratio

Cut optimised to yield maximal Signal/√Bgd: L>0.99

$B_s \rightarrow \mu^+ \mu^-$: Background Prediction

Background:

- Random muons from cc and bb
- − QCD jets $\rightarrow \pi/K \rightarrow \mu + X$
- Cannot estimate using MC => use "side bands"

Define control regions

- Lifetime<0 (due to misreconstruction): "OS-"
- Muons with same charge: "SS"
- Fake muons that fail certain ID cuts: "FM"

	Ī	CM	II C'M	TT T
		CMU-CMU		
$_{ m sample}$	$L_R { m cut}$	pred	obsv	$\operatorname{prob}(\%)$
	> 0.50	$489 \pm (12)$	483	41
OS-	> 0.90	$62 \pm (4)$	73	12
	> 0.99	$4.8 \pm (1.2)$	9	8
SS+	> 0.50	$5.4 \pm (1.3)$	4	40
	> 0.90	< 0.1	0	-
	> 0.99	< 0.1	0	-
SS-	> 0.50	$6.6 \pm (1.4)$	7	49
	> 0.90	$0.6 \pm (0.4)$	1	45
	> 0.99	< 0.1	0	-
FM+	> 0.50	$188 \pm (8)$	159	3
	> 0.90	$34 \pm (3)$		7
	> 0.99	$4.5 \pm (1.0)$	9	6

Data agree with background estimates in control regions

=> Gain confidence in background prediction!

Signal Acceptance

- Does MC reproduce cut variables?
- Use B⁺→J/ψ+K⁺ as control sample
 - E.g. test isolation cut of Iso>0.65
 - MC models data well
 - Disagreements taken as systematic uncertainty

=> Let's open the blind box!

Opening the "Box": $B_s \rightarrow \mu^+ \mu^-$

	DØ	CDF
Lumi (pb ⁻¹)	300	780
expected	3.7±1.1	1.3±0.4
observed	4	1

Calculating a limit

- Different methods:
 - Bayes
 - Frequentist
 - **—** ...
- Source of big arguments amongst statisticians:
 - Different method mean different things
 - Say what YOU have done
 - There is no "right" way
- Treatment of syst. Errors somewhat tricky

- But basically:
 - Calculate probability that data consistent with background + new physics:
 - P=e^{-μ}μ^N/N!
 - N = observed events
 - parameter μ is $N_{BG} + N_{new}$
 - P=5% => 95% CL upper limit on N_{new} and thus $\sigma xBR=N_{new}/(\alpha L)$
- E.g.:
 - 0 events observed means <2.7 events at 95%C.L.

Opening the "Box": $B_s \rightarrow \mu^+ \mu^-$

	DØ	CDF
Lumi (pb ⁻¹)	300	780
expected	3.7±1.1	1.3±0.4
observed	4	1
BR@95% C.L.	<3.7x10 ⁻⁷	<1X10 ⁻⁷

What did we learn from B Physics about New Physics?

SUSY contributions

- affect both B_s mixing and $B_s \rightarrow \mu^+\mu^-$
- Strong constraints on SUSY at large tanβ and small m_A

Conclusions

- New Physics could contribute to B hadron properties:
 - At hadron colliders
 - b-production cross section is 1000 times larger than at the B factories
 - all kinds of B hadrons are produced: B_d, B_s, Λ_b, B_c
 - The Λ_h lifetime is an interesting topic
 - First evidence of B_s meson oscillations:
 - Measurement $\Delta m_s = 17.33^{+0.42}_{-0.21}$ (stat) ± 0.07 (syst) ps⁻¹
 - Search for B_s→µµ yields strong limit
 - sensitive probe of New Physics
- No evidence for new physics contributions (yet)

Backup Slides

Real Measurement Layout

Combining Tevatron with the World

Likelihood Significance

- randomize tags 50 000 times in data, find maximum ∆log(L)
- in 228 experiments, $\Delta log(L) \geq 6.06$
- probability of fake from random tags = 0.5% → measure ∆m_s!

Hadronic Lifetime Measurement

- SVT trigger, event selection sculpts lifetime distribution trigger turnon
- correct for on average using efficiency function:

 $p = e^{-t'/\tau} \vee R(t',t) \cdot ε(t)$

- efficiency function shape contributions:
 - event selection, trigger
- details of efficiency curve
 - important for lifetime measurement
 - inconsequential for mixing measurement

Hadronic Lifetime Results

Mode	Lifetime [ps] (stat. only)	
$B^0 o D^{\scriptscriptstyle{-}} \pi^{\scriptscriptstyle{+}}$	1.508 ± 0.017	
$ extsf{B}^{ extsf{-}} o extsf{D}^0 \; \pi^{ extsf{-}}$	1.638 ± 0.017	
$B_s \to D_s \ \pi(\pi\pi)$	1.538 ± 0.040	

λ World Average:

$$\begin{array}{l} B^0 \to 1.534 \, \pm \, 0.013 \; ps^{\text{-}1} \\ B^+ \to 1.653 \, \pm \, 0.014 \; ps^{\text{-}1} \\ B_s \to 1.469 \, \pm \, 0.059 \; ps^{\text{-}1} \end{array}$$

Excellent agreement!

Calibrating the Proper Time Resolution

- utilize large prompt charm cross section
- construct "B⁰-like" topologies of prompt D⁻ + prompt track
- calibrate ct resolution by fitting for "lifetime" of "B⁰-like" objects